Credential Management

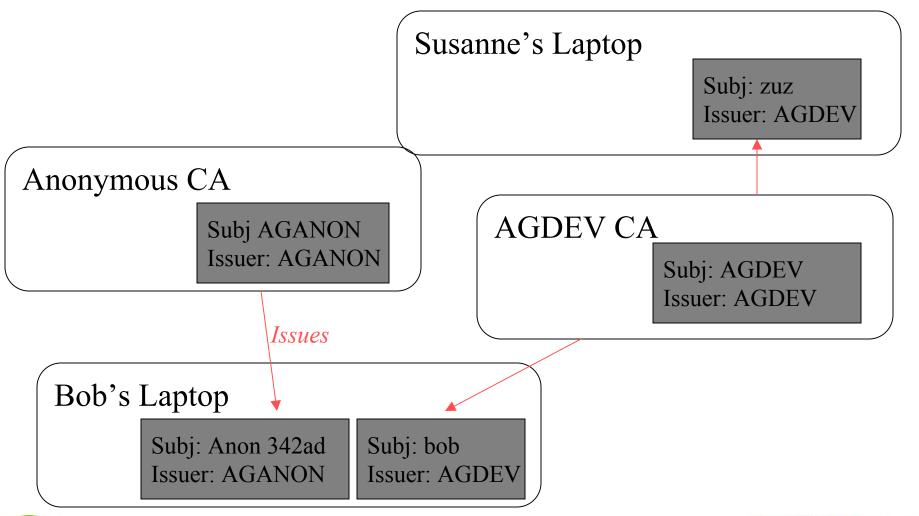
Robert D. Olson June 11, 2004

Overview

- General security overview
- Some PKI history
- Validation
- Authorization
- Operational Issues
- Certificate Authorities
- Management tools

Security Overview

- AG Toolkit provides foundation for secure communication
- Essential component: Authentication
- Process by which a claimed identity is verified
- AG needs authentication for ...
 - Users
 - Services
 - Devices


State of the Toolkit

- Given the preceding discussion, how does this affect the AG Toolkit?
 - Any communicating party must have an identity certificate.
 - Any communicating party must hold the trusted
 CA certificate for the CA that issued certificates
 to any party with which it communicates.

Certificate Distribution

Identity Certificates

- Each "human" user of the AG required to have identity certificate
- ("Required" is actually a result of the policy enforced by a particular service)
- ANL AG group provides two mechanisms for obtaining identity certificates

AGDev CA

- FuturesLab group runs a fairly casual Certificate Authority
- Requests generated through the AG Venue Client
- Issuing policy requires real names and email addresses
- Generated certificates installed through the AG Venue Client as well

Anonymous CA

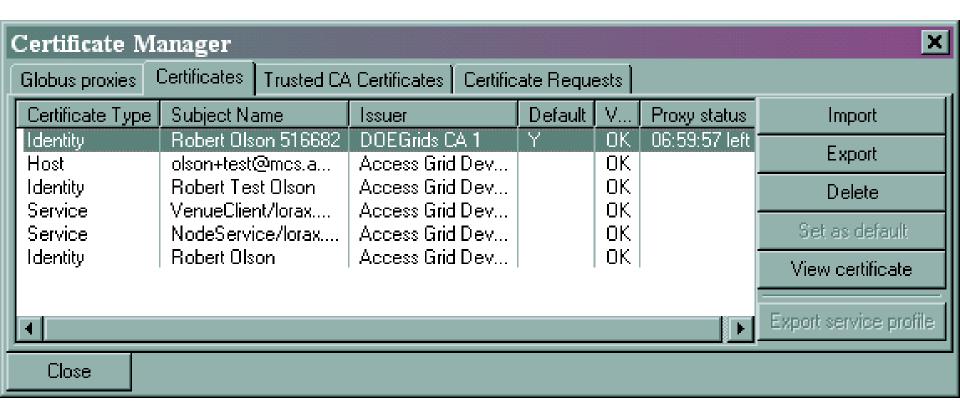
- For testing purposes, and for instances when a more serious identity is not required
- An "online CA", certificates issued immediately by an online service
- Names always of the form "Anonymous User XXXXX"

Service Certificates

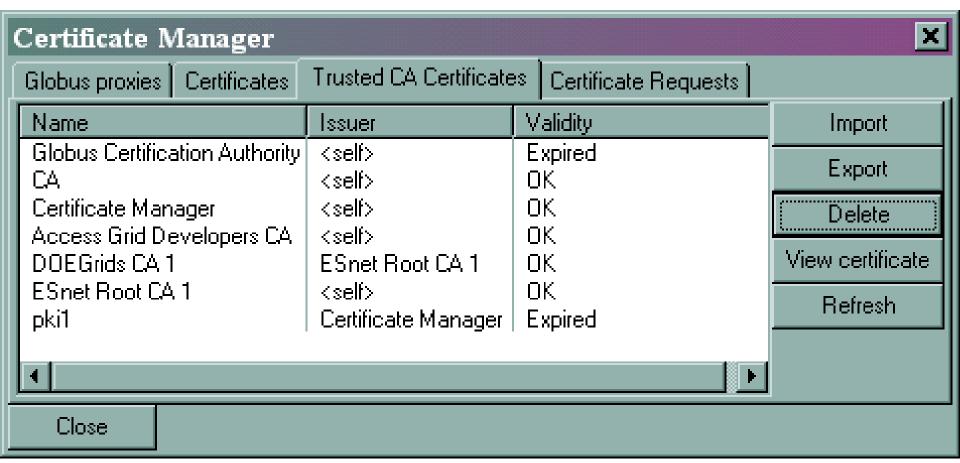
- Autonomous services (VenueServer, node services, etc) also require identity certificates
- Typically do not have encrypted private keys (protection via OS security)
- As of AG2.2, AGDev CA also issues service certificates

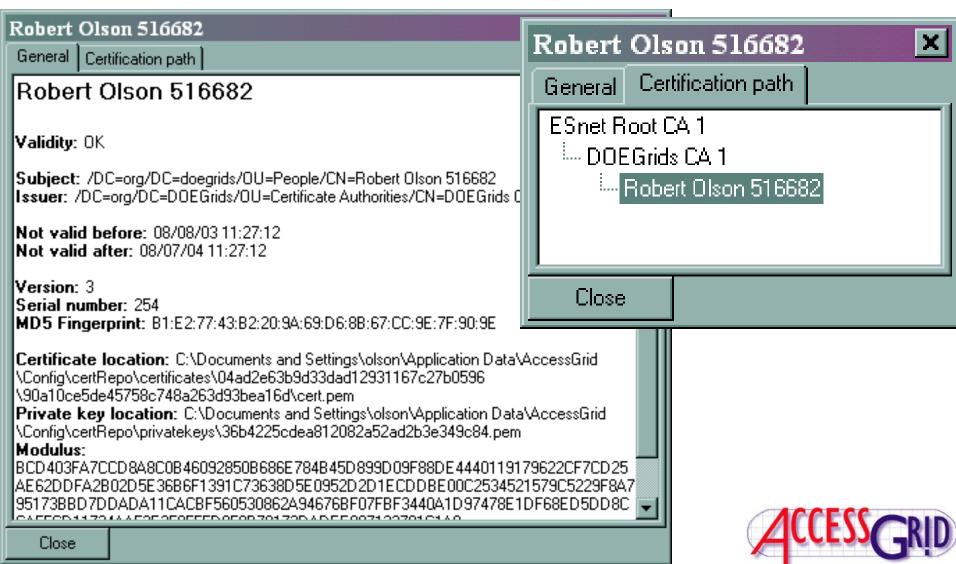
Other Certificate Authorities

- An organization that has an existing PKI may use this easily with AG
- Existing CA certificates to be imported to all participating AG software (clients and services)
- Identity certificates imported for use
- Future enhancements to aid in the determination of precisely which CA a client or service requires


Certificate Management in AG Toolkit

- AGTk provides comprehensive certificate management tools
 - Certificate Manager and Repository objects for use by applications
 - Maintain sets of identity, CA, proxy certificates
 - Provides interface to underlying security environment
 - Command-line and GUI-based interfaces for manipulating certificates
- Security tools entirely hide the details from application code


GUI Certificate Manager Certificate View


GUI Certificate Manager Trusted CA Certificates

GUI Certificate Manager Certificate Detail

Future Directions

- Toward easier certificate management
- Toward easier installation
- Toward support for future Web Services

Other Certificate Access Mechanisms

- Burdensome to copy identity certificates about from machine to machine
- Potential solutions:
 - Memory stick (works with current tech)
 - Encryption tokens (requires new support from Globus Tookit)
 - Certificate proxying servers (MyProxy)

Node Cluster Services

- In a multiple-machine node, each component requires a cert
- However, if components do not communicate externally, do not need outside CA
- Local CA set up at install time, certs issued to all node components
- If remote access required (remote control), user identity certs may be issued by the node administrator (tight control of outside access possible)

Insecure Toolkit

- In some environments, security may not matter at all
- Toolkit supports the use of entirely insecure communications
- No certificates required
- All messaging in the clear
- Appropriate for closed networks
 - I worry about compromise potential on the open Internet

Graduated Security

- We've discussed tightly locked-down systems, and unlocked systems...
- Is there a happy medium?
- Consider that:
 - For most use, we don't need bulletproof security
 - But for some applications, and in some communities, we do
 - We may desire to shift from one mode to another dynamically

Graduated Security, cont.

- Consider the Pervasive Collaborative Computing Environment Project (Deb Agarwal, LBNL)
- Among other things, PCCE is investigating a graduated security model
 - Supports varying levels of user registration
 - Varying modes of user authentication and credentials
- Supports both established and ad hoc collaborative modes
- Research question: How can this be applied to the AG?

Graduated Security, Cont.

- Anonymous Certificates also a intermediate solution
- Anon cert uniquely identifies a client, but does not bind user identity to the client identity
- Certs issued automatically (And immediately)

Online CA with external authenticators

- Automated CA which issues certificate based on some external criteria
- Example: Unix login authenticator
 - User submits cert request with NIS login & password (encrypted)
 - CA uses NIS to perform password verification
 - On success, CA issues certificate
- To the user, he used his Unix login to gain access to resource
- To the resource, the user provided a valid certificate

Web Services

- Grid-based computing moving toward Web Services for high-level communication
- SOAP + WSDL + high level Web Service interface
 - WS-Resource resource management
 - WS-Service Group service registry
 - WS-Security secure communications

WS-Security

- SOAP enhancements for
 - Message integrity
 - Message confidentiality
 - Single-message authentication
 - Encoding of security tokens
- As WS technology matures, AG project will track the security work
- Likely to still utilize X509 PKI, retaining utility of Certificate Management tools

Linkage to other projects

- Depending on user requirements, and based on our support of the Globus PKI mechanisms, possible to support such things as the NMI-supported tools:
 - Kerberos-based authentication, via KX509
 - SAML/Shibboleth for interaction with web-based single sign-on systems

Credits

This work is supported in part by:

- The Mathematical, Information, and Computational Sciences
 Division subprogram of the Office of Advanced Scientific
 Computing Research, Office of Science, U.S. Department of
 Energy, under Contract W-31-109-ENG-38, the National
 Science Foundation under Grant No. ANI-0222509,
- Support from Microsoft Research, and
- Federal funds from the National Library of Medicine,
 National Institutes of Health, under Contract No. NOI-LM-3-3508 and Grant ROI-LM-06756,

And viewers like you.

